
2020-08-25

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Selection sort

2
Binary search

Outline

• In this lesson, we will:

– Describe a selection-sort algorithm to sort an array

– Consider a straight-forward implementation

– Observe that it makes more sense to use helper functions

– Make a simple modification that improves its function

– Consider the appropriate tests for this algorithm

– Briefly describe the execution time and benefits of this algorithm

3
Binary search

Searching sorted arrays

• Suppose you start with an unsorted array of values

– How can you rearrange the entries so that they are sorted?

• Selection sort describes an algorithm that takes an unsorted array,

 and after a fixed number of steps,

 rearranges the entries so that they are sorted

4
Binary search

Searching sorted arrays

• As with linear search and binary search,

 selection sort can be described independent of

 any programming language

– Given an array of N entries,

• Find the largest of the first N entries, and swap it with the last entry

• Find the largest of the first N – 1 entries,

 and swap it with the second-last entry

• Find the largest of the first N – 2 entries,

 and swap it with the third-last entry

 and so on, until you are finding the largest of only one entry

2020-08-25

2

5
Binary search

Searching sorted arrays

• To implement this in C++, we will use the function declaration
 void selection_sort(double array[], std::size_t capacity);

– Remember that when you call a function with an array,

 it is the address that is passed,

 so any change to the array entries changes the original array, too

6
Binary search

Searching sorted arrays

• Thus, suppose you were to sort an array of capacity 10:

– On the first iteration, you would find the largest entry between
indices 0 and 9 inclusive, and swap that entry with entry 9

– You would proceed as follows

 0 9 9

 0 8 8

 0 7 7

 0 6 6

 0 5 5

 0 4 4

 0 3 3

 0 2 2

 0 1 1

Search
starting
at index

Search up to
and including

index

Swap with
index

k

capacity - 1

k > 0

7
Binary search

Searching sorted arrays

• Thus, our implementation would start:

for (std::size_t k{capacity - 1}; k > 0; --k) {

 // Find the index of the maximum

 // entry between indices 0 and 'k'

 // Swap that entry with the entry at index 'k'

}

8
Binary search

Searching sorted arrays

• Your first thought might be to implement both these ideas:
void selection_sort(double array[], std::size_t capacity) {

 for (std::size_t k{capacity - 1}; k > 0; --k) {

 // Assume the maximum is at index 0:

 std::size_t max_index{0};

 // If any entry between indices 1 and 'k' is larger,

 // update 'max_index'

 for (std::size_t j{1}; j <= k; ++j) {

 if (array[j] > array[max_index]) {

 max_index = j;

 }

 }

 // Swap the two entries

 double tmp{array[max_index]};

 array[max_index] = array[k];

 array[k] = tmp;

 }

 assert(is_sorted(array, capacity) == capacity);

}

2020-08-25

3

9
Binary search

Searching sorted arrays

• Suppose, however, we had authored two additional functions:
 void swap(double &first, double &second);

 std::size_t find_max(double array[], std::size_t capacity);

10
Binary search

Searching sorted arrays

• For example, swapping two values would be easy:
 void swap(double &first, double &second) {

 double tmp{ first };

 first = second;

 second = tmp;

 }

• This is implemented in the standard template library,

 under the name std::swap

– You would have to include the library #include <utility>

11
Binary search

Searching sorted arrays

• Similarly, finding the maximum entry of an array is easy, too:

 std::size_t find_max(double array[], std::size_t capacity) {

 assert(capacity > 0);

 std::size_t max_index{0};

 for (std::size_t k{1}; k < capacity; ++k) {

 if (array[k] > array[max_index]) {

 max_index = k;

 }

 }

 return max_index;

 }

12
Binary search

Searching sorted arrays

• Thus, using these two helper functions,

 we can simplify our implementation

for (std::size_t k{capacity - 1}; k > 0; --k) {

 // Find the index of the maximum

 // entry between indices 0 and 'k'

 std::size_t max_index{ find_max(array, k + 1) };

 // Swap that entry with the entry at index 'k'

 std::swap(array[max_index], array[k]);

}

2020-08-25

4

13
Binary search

Searching sorted arrays

• Thus, our final implementation is

void selection_sort(double array[], std::size_t capacity) {

 for (std::size_t k{capacity - 1}; k > 0; --k) {

 // Find the maximum entry between 0 and 'k'

 std::size_t max_index{ find_max(array, k + 1) };

 // Swap that entry with the entry at index 'k'

 std::swap(array[max_index], array[k]);

 }

 assert(is_sorted(array, capacity) == capacity);

}

14
Binary search

Searching sorted arrays
void selection_sort(double array[], std::size_t capacity) {

 for (std::size_t k{capacity - 1}; k > 0; --k) {

 std::size_t max_index{0};

 for (std::size_t j{1}; j <= k; ++j) {

 if (array[j] > array[max_index]) {

 max_index = j;

 }

 }

 double tmp{array[max_index]};

 array[max_index] = array[k];

 array[k] = tmp;

 }

} void selection_sort(double array[], std::size_t capacity) {
 for (std::size_t k{capacity - 1}; k > 0; --k) {
 std::size_t max_index{ find_max(array, k + 1) };

 std::swap(array[max_index], array[k]);
 }
}

15
Binary search

Implementing the binary search

• We have finished our algorithm; however,

 is it possible to make a small incremental improvement?

– With each iteration of the loop:

• We are finding the maximum entry from index 0 to index k

• We swap what is at that index with the entry at index k

– If the maximum entry is already in the last index,

 do we have to perform a swap?

– How about the following:

• Find the maximum entry from index 0 to index k - 1

• If that maximum entry is greater than the entry array[k],

 only then swap the two

16
Binary search

Searching sorted arrays

• This only changes our implementation slightly:

void selection_sort(double array[], std::size_t capacity) {

 for (std::size_t k{capacity - 1}; k > 0; --k) {

 // Find the maximum entry between 0 and 'k - 1'

 std::size_t max_index{ find_max(array, k) };

 // If the largest entry before 'array[k]' is

 // greater than the last entry, swap them

 if (array[max_index] > array[k]) {

 std::swap(array[max_index], array[k]);

 }

 }

 assert(is_sorted(array, capacity) == capacity);

}

2020-08-25

5

17
Binary search

Testing our implementation

• We should author a test for our implementation:

– How to proceed?

1. Sort an array of capacity 0

2. Sort an array of capacity 1

3. Sort three arrays of capacity 2:

 {4.5, 7.2} {8.2, 8.2} {6.1, -9.0}

4. Sort all possible arrays of capacity 3:

 {0,0,0}

 {0,0,1} {0,1,0} {1,0,0}

 {0,1,1} {1,0,1} {1,1,0}

 {0,1,2} {0,2,1} {1,0,2} {1,2,0} {2,0,1} {2,1,0}

5. Sort three arrays of capacity 100:

 {-7.5, -0.3, 0.0, 1.2, 1.5, 2.70, …, 89.2}

 {32.5, 29.5, 25.9, 24.8, 24.5, …, -18.3, -18.7}

 {5.7, 19.3, -18.2, 24.9, 58.2, 16.8, …, 35.2}

18
Binary search

How much work is involved?

• You will note that the algorithm takes the exact same number of
steps no matter what the array looks like

– In your algorithms and data structures course,

 you will see that the run time can be calculated by counting the number

 of statements that are executed

– In this case, if the capacity is n, it is approximately a scalar multiple of:

 (n – 1) + (n – 2) + (n – 2) + … + 3 + 2 + 1

• This implementation has one benefit over all other such algorithms

– It has the minimum number of changes to entries of the array

– In our second implementation, if the array is sorted,

 no changes are made to the array

 1

2

n n


19
Binary search

Summary

• Following this presentation, you now:

– Understand how to implement a selection sort

– Know that it is better to create helper functions that perform
common tasks

• In this case, finding the maximum entry and swapping two values

– Are aware that smaller changes can have benefits to the
implementation

– Have seen a reasonable set of tests for a sorting algorithm

– Have an overview of the idea of execution and one benefit of this
algorithm

20
Binary search

References

[1] Wikipedia,

 https://en.wikipedia.org/wiki/Selection_sort

[2] Dictionary of Algorithms and Data Structures (DADS)

 https://xlinux.nist.gov/dads/HTML/selectionSort.html

2020-08-25

6

21
Binary search

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

22
Binary search

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

23
Binary search

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

